Skip to main content

Simple Machine

A simple machine is a mechanical device that changes the direction or magnitude of a force. In general, they can be defined as the simplest mechanisms that use mechanical advantage (also called leverage) to multiply force. Usually the term refers to the six classical simple machines that were defined by Renaissance scientists:
  • Lever
  • Wheel and axle
  • Pulley
  • Inclined plane
  • Wedge
  • Screw
A simple machine uses a single applied force to do work against a single work load. Ignoring friction losses, the work done on the load is equal to the work done by the applied force. The machine can increase the amount of the output force, at the cost of a proportional decrease in the distance moved by the load. The ratio of the output to the applied force is called the mechanical advantage.

Simple machines can be regarded as the elementary "building blocks" of which all more complicated machines (sometimes called compound machines) are composed. For example, wheels, levers, and pulleys are all used in the mechanism of a bicycle. The mechanical advantage of a compound machine is just the product of the mechanical advantages of the simple machines of which it is composed.


Although they continue to be of great importance in mechanics and applied science, modern mechanics has moved beyond the view of the simple machines as the ultimate building blocks of which all machines are composed, which arose in the Renaissance as a neoclassical amplification of ancient Greek texts. The great variety and sophistication of modern machine linkages, which arose during the industrial revolution, is inadequately described by these six simple categories. Various post-Renaissance authors have compiled expanded lists of "simple machines," often using terms like basic machines, compound machines, or machine elements to distinguish them from the classical simple machines above. By the late 1800s, Franz Reuleaux had identified hundred of machine elements, calling them simple machines. Modern machine theory analyzes machines as kinematic chains composed of elementary linkages called kinematic pairs.

The idea of simple machines originated with the Greek philosopher Archimedes around the 3rd century BC, who studied the Archimedean simple machines: lever, pulley, and screws. He discovered the principle of mechanical advantage in the lever. Archimedes' famous remark with regard to the discovery: "Give me a place to stand on, and I will move the Earth," expresses his realization that there was no limit to the amount of force amplification that could be achieved by using mechanical advantage. Later Greek philosophers defined the classic five simple machines (excluding the inclined plane) and were able to calculate their (ideal) mechanical advantage. For example, Heron of Alexandria (circa 10 - 75 AD) in his work "Mechanics" lists five mechanisms that can "set a load in motion": lever, windlass, pulley, wedge, and screw, and describes their fabrication and uses. However, the Greeks' understanding was limited to the statics of simple machines (the balance of forces), and did not include dynamics, the tradeoff between force and distance, or the concept of work.

During the Renaissance the dynamics of the mechanical powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force that they could apply, leading eventually to the new concept of mechanical work. In 1586, Flemish engineer Simon Stevin derived the mechanical advantage of the inclined plane, and it was included with the other simple machines. The complete dynamic theory of simple machines was worked out by Italian scientist Galileo Galilei in 1600 in "Le Meccaniche" (On Machines), in which he showed the underlying mathematical similarity of the machines as force multipliers. He was the first to explain that simple machines do not create energy, only transform it.

The classic rules of sliding friction in machines were discovered by Leonardo da Vinci (1452 - 1519), but were unpublished and merely documented in his notebooks, and were based on pre-Newtonian science such as believing friction was an ethereal fluid. They were rediscovered by Guillaume Amontons (1699) and were further developed by Charles-Agustin de Coulomb (1785).

x--------x

This post is sponsored by Nike.

Comments

Popular posts from this blog

How to Create a Richly Imagined World

For someone who likes fantasy and sci-fi fiction, most of the time, a lot of people ask me about how to create a richly imagined world. Fantasy and sci-fi elements rest heavily on how an author weave the setting and the world in which the heroes dwell in, and it helps to make the novel to be imagined vividly in the readers' minds. A convincing world should be relatable, something that we can associate ourselves with. For us to be associated with a world an author created in his mind, and wrote on the pages of a book, this world has to be close to the real thing. It has to be systematic, real and alive, and very convincing. A real world has certain elements, and an author must consider them in writing a vividly imagined world: Cartography - a fantasy or sci-fi world depend heavily on geography and maps, especially if the plot requires war and the belligerents occupy so much space in the plot. A convincing world has the world separated in territories, and every part of the...

The Roman Empire

 The Roman Empire was the post-Rupublican period of ancient Rome. As a polity it included large territorial holdings around the Mediterranean Sea in Europe, Northern Africa, and Western Asia ruled by emperors. From the accession of Caesar Augustus to the military anarchy of the third century, it was a principate with Italy as metropole of the provinces and the city of Rome as sole capital (27 BC - 286 AD). After the military crisis, the empire was ruled by military emperors who shared rule over the Western Roman Empire (based in Milan and later in Ravenna) and over the Eastern Roman Empire (also known as the Byzantine Empire; centered on Nicomedia and Antioch, later based in Constantinopole). Rome remained the nominal capital of both parts until 476 AD, when the imperial insignia were sent to Constantinopole, following the capture of Ravenna by the barbarians of Odoacer and the subsequent deposition of Romulus Augustulus. The fall of the Western Roman Empire to Germanic Kings, alon...

Theodicy

Theodicy means vindication of God. It is to answer the question why a good God permits the manifestation of evil, thus resolving the issue of the problem of evil. Some theodicies also address the evidential problem of evil by attempting "to make the existence of an all-knowing, all-powerful, and all-good or omnibenevolent God consistent with the existence of evil or suffering in this world." Unlike a defense, which tries to demonstrate that God's existence is logically possible in the light of evil, a theodicy attempts to provide a framework where God's existence is also plausible. The German philosopher and mathematician Gottfried Leibniz coined the term "theodicy" in 1710 in his work Théodecée, through various responses to the problem of evil that had been previously proposed. The British philosopher John Hick traced the history of moral theodicy in his 1966 work, Evil and the Love of God, identifying three major traditions: the Plotinian theodicy, named a...